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In this paper, optimum wing bending and torsion deformations are explored for a 

mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is 

modeled using a strain-based geometrically nonlinear beam formulation, coupled with 

unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional 

discrete control surfaces for trimming the flexible aircraft, the design space for searching the 

optimum wing geometries is enlarged. To achieve high performance flight, the wing 

geometry is best tailored according to the specific flight mission needs. In this study, the 

steady level flight and the coordinated turn flight are considered, and the optimum wing 

deformations with the minimum drag at these flight conditions are searched by utilizing a 

modal-based optimization procedure, subject to the trim and other constraints. The 

numerical study verifies the feasibility of the modal-based optimization approach, and shows 

the resulting optimum wing configuration and its sensitivity under different flight profiles. 

Nomenclature 

a0 = local aerodynamic frame, with a0y axis aligned with zero lift line of airfoil 

a1 = local aerodynamic frame, with a1y axis aligned with airfoil motion velocity 

B = body reference frame 
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BF, BM = influence matrices for the distributed forces and moments 

b = positions and orientations of the B frame, as time integral of β 

bc = semichord of airfoil, m 

CFF, CFB, CBF, CBB 

 = components of generalized damping matrix 

D = total drag of aircraft, N 

d = distance of midchord in front of beam reference axis, m  

F, M = forces and moments in physical frames 

F1, F2, F3 

 = influence matrices in inflow equations with independent variables 

Fdist, Fpt 

 = distributed and point forces 

g 

J = Jacobians 

KFF 

l, m, d = aerodynamic loads on an airfoil 

MA = mass of complete aircraft, kg 

Mdist, Mpt 

 = distributed and point moments 

MFF, MFB, MBF, MBB 

 = components of generalized mass matrix 

N = influence matrix for gravity force 

 = number of linear natural modes selected to represent aircraft deformation 

pB, θB = position and orientation of B frame, as time integral of vB and ωB, respectively 

R = generalized load vector 

R = range of flight, m 

r = turn radius, m 

s = curvilinear coordinates of beam, m 



T = total engine thrust force, N 

U = strain energy, J 

V = turn speed, m/s 

vB, ωB = linear and angular velocities of B frame, resolved in B frame itself 

w = local beam reference frame defined at each node along beam reference line 

x = complete set of variables in optimization 

y , z  = airfoil translational velocity components resolved in a0 frame, m/s 

  = airfoil angular velocity about a0x axis, rad/s 

αB = aircraft body pitch angle, deg 

β = body velocities, with translational and angular components, resolved in B frame 

δa, δe, δr 

 = aileron, elevator, and rudder deflections (deg) 

ε = elastic strain/curvature vectors 

εx = Extensional strain beam members 

η = magnitudes of linear natural modes 

κx, κy, κz 

 = torsional, flat bending, and edge bending curvatures of beam members, 1/m 

λ = inflow states, m/s 

λ0 = inflow velocities, m/s 

ρ∞ = air density, kg/m3 

Φ = mode shape of strain modes 

φB = aircraft bank angle, deg 

 

Abbreviation 

c.g. = center of gravity 

l.e. = leading edge 

 

Subscript 



B = reference to B frame 

BB, BF 

 = components of a matrix with respect to body/flexible differential equations of motion 

F = reference to flexible degrees of freedom 

FB, FF 

 = components of a matrix with respect to flexible/body differential equations of motion 

hb = h vector with respect to motion of B frame 

hε = h vector with respect to strain ε 

mc = midchord 

pb = nodal position with respect to motion of B frame 

pε = nodal position with respect to strain ε 

ra = beam reference axis 

x, y, z = components of a reference frame 

θb = nodal rotation with respect to motion of B frame 

θε = nodal rotation with respect to strain ε 

I. Introduction 

HE improvement of aircraft operation efficiency needs to be considered over the whole flight plan, instead of a 

single point in the flight envelop, since the flight missions and conditions might vary during the flight. Therefore, it 

is natural to employ morphing wing designs so that the aircraft can be made adaptive to different flight missions and 

conditions. At the advent of recent development in advanced composites as well as sensor and actuator technologies, 

in-flight adaptive wing/aircraft morphing is now becoming a tangible goal. With the morphing technologies, aircraft 

performances (e.g., range, endurance, maneuverability, gust rejection, etc.) can be passively or actively tailored to 

different flight conditions, while maintaining the flight stability. As an example, in Refs. [1, 2], the roll performance 

of a highly flexible aircraft was tailored by using the piezoelectric actuations (e.g., micro-fiber composites) 

embedded in the skin for wing warping (bending and torsion) control. Traditionally, the discrete control surfaces 

were used to re-distribute the aerodynamic loads along the wing span during the flight, so as to tailor the aircraft 

performance. However, the deflection of discrete surfaces, while providing the desired lift control, may increase the 

T 



aerodynamic drag. To address this issue, different techniques had been applied to explore more efficient approaches 

to control the wing loading, improve the aircraft performance, and reduce the drag. An effective alternative has been 

to introduce conformal wing/airfoil shape changes for the aerodynamic load control. FlexSys Inc., with the support 

from AFRL, developed a compliant trailing edge concept in their Mission Adaptive Compliant Wing (MACW) 

project [3]. With a piezoelectric actuator driving the compliant morphing mechanism, it was shown in Ref. [4] that 

the continuous wing trailing edge was able to deflect about ±10. In Ref. [5], a cantilever wing platform was 

designed and experimentally tested for the camber changes with active piezoelectric actuations. In rotorcraft 

application, the optimal airfoil design was studied for the control of airfoil camber [6]. Recently, in an effort to 

achieve a low-drag, high-lift configuration, a flexible transport aircraft wing design utilizing the Variable Camber 

Continuous Trailing Edge Flaps (VCCTEFs) to vary the wing camber is being studied at NASA Ames Research 

Center. The studies showed that highly flexible wing, if elastically shaped in-flight by active control of wing twist 

and bending, may improve aerodynamic efficiency through drag reduction during cruise and enhanced lift 

performance during take-off and landing [7]. Nguyen and Ting identified the flutter characteristics of the wing using 

a linear beam formulation and vortex-lattice aerodynamics [8]. Their study also indicated the reduction of flutter 

boundary of the wing with increased structural flexibility. 

In general, the airborne intelligence, surveillance, and reconnaissance (ISR) missions [9] or civilian atmospheric 

research [10] require the vehicle platforms with high-aspect-ratio wings, resulting in highly flexible aircraft. This is 

because the high-altitude, long endurance (HALE) flights of these aircraft demand for greater aerodynamic 

performance. The improvement of the flight performance of the aircraft may be achieved through the high-aspect-

ratio wings, as well as the lightweight, highly flexible structures. The high flexibility associated with the wing 

structures brings some special requirements to the formulation applied to the analysis. From the previous 

investigations [11], the slender wings of highly flexible aircraft may undergo large deformations, although still 

under small strain, under normal operating loads, exhibiting geometrically nonlinear behavior. The structural 

dynamic and aeroelastic characteristics of the aircraft may change significantly due to the large deflections of their 

flexible wings. In addition, highly flexible aircraft usually see the coupling between the low-frequency elastic modes 

of their slender wings and the rigid-body motions of the complete aircraft [11-15]. Therefore, the coupled effects 

between the large deflection due to the wing flexibility and the aeroelastic/flight dynamic characteristics of the 

complete aircraft must be properly accounted for in a nonlinear aeroelastic solution. 



In addition to the aerodynamic platform, the lightweight structure technology is also a critical enabling path in 

developing high-performance aircraft. The trend in aircraft industries has been to increase the usage of composite 

materials in overall aircraft structure to save mass and reduce fuel burn. For example, the structure of Boeing 787 

Dreamliner consists of 80% composites by volume and 50% composites by weight. More recently, a novel 

aerostructure concept is under development by utilizing lattice-based composite materials and discrete construction 

techniques to realize high stiffness-to-density ratio structures [16]. Furthermore, this digital construction of 

aerostructure can potentially offer great adaptability for varying flight missions and conditions. 

The high flexibility and large wing deformation may be pro-actively utilized to improve the aircraft 

performance. The active aeroelastic tailoring techniques would allow aircraft designers to take advantage of the 

wing flexibility to create the desired wing load distribution according to the mission requirement, so as to improve 

overall aircraft operating efficiency and performance, without using the traditional discrete control surfaces. In 

doing so, one needs to understand the optimum wing bending, torsion, and camber deformations at various flight 

profiles. Subsequently, the optimum wing deformations will need to be integrated with on-board flight control 

systems to ensure the desired wing shape is maintained at designated flight condition. 

The objective of this paper is to explore the optimum wing bending and torsion deformations (camber is not 

considered in the current study) of a highly flexible aircraft in seeking the most efficient flight configuration at any 

given flight scenario. Without modeling the built-up wing structures, a homogenized set of aircraft properties will be 

used as inputs to a strain-based nonlinear aeroelastic formulation for the complete aircraft modeling. This 

formulation has been successfully used to design and analyze different highly flexible aircraft configurations [14, 

15, 17]. To find the optimum wing shape among the complex space of the wing deformations, a modal-based 

optimization scheme will be developed, which satisfies the required trimming condition of the aircraft. 

II. Theoretical Formulation 

Solutions of the coupled aeroelasticity and flight dynamics using the strain-based geometrically nonlinear beam 

formulation have been discussed by Su and Cesnik [14, 15, 18]. An introduction of the strain-based aeroelastic 

equations is presented here, followed by the modal-based optimization formulation for searching the optimum wing 

geometries under different flight conditions. 

 



A. System Frames 

As shown in Fig. 1a, a fixed global (inertial) frame G is defined. A body frame B(t) is then built in the global 

frame to describe the vehicle position and orientation, with Bx(t) pointing to the right wing, By(t) pointing forward, 

and Bz(t) being cross product of Bx(t) and By(t). The position and orientation b  and the time derivatives b  and b  of 

the B frame can be defined as 

 B B B B B

B B B B B

p p v p v
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where pB and θB are body position and orientation, both resolved in the body frame B. Note that the origin of the 

body frame is arbitrary in the vehicle and it does not have to be the location of the vehicle’s center of gravity. 

Within the body frame, a local beam frame w is built at each node along the beam reference line (Fig. 1b), which 

is used to define the nodal position and orientation. Vectors wx(s,t), wy(s,t), and wz(s,t) are bases of the beam frame, 

whose directions are pointing along the beam reference axis, toward the leading edge (front), and normal to the 

beam surface, respectively, resolved in the body frame. s is the curvilinear beam coordinate. 
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Fig. 1 Basic beam reference frames. 

 

B. Elements with Constant Strains 

In Ref. [19], a nonlinear beam element has been introduced to model the elastic deformation of slender beams. 

Strain degrees (curvatures) of the beam reference line are considered as the independent variables in the solution. 



The strain-based formulation allows simple shape functions for the element. Constant-value functions are used here. 

Thus, the strain vector of an element is denoted as 

  T
e x x y z      (2) 

where εx is the extensional strain, κx, κy, and κz are the twist of the beam reference line, bending about the local wy 

axis, and bending about the local wz axis, respectively. The total strain vector of the complete aircraft is obtained by 

assembling the global strain vector: 

  1 2 3
T T T T

e e e      (3) 

where εei denotes the strain of the ith element. Transverse shear strains are not explicitly included in this equation. 

However, shear strain effects are included in the constitutive relation [20]. Complex geometrically nonlinear 

deformations can be represented by such a constant strain distribution over each element. 

C. Equations of Motion 

The equations of motion of the system are derived by following the principle of virtual work extended to 

dynamic systems (equivalent to Hamilton’s Principle). The total virtual work done on a beam is found by integrating 

the products of all internal and external forces and the corresponding virtual displacements over the volume, which 

is given as 

 ( , , ) ( , , )T

V

W u x y z f x y z dV    (4) 

where f represents general forces acting on a differential volume. This may include internal elastic forces, inertial 

forces, gravity forces, external distributed forces and moments, external point forces and moments, etc. u  is the 

corresponding virtual displacement. Following the same process described in Ref. [14], the elastic equations of 

motion are eventually derived as 
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where the components of the generalized inertia, damping, and stiffness matrices are found in Refs. [14, 15]. The 

generalized force vector is 
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where N, BF, and BM are the influence matrices for the gravity force, distributed forces, and distributed moments, 

respectively, which come from the numerical integration. The generalized force vector involves the effects from 

initial strains ε0, gravity fields g, distributed forces Fdist, distributed moments Mdist, point forces Fpt, and point 

moments Mpt. The aerodynamic forces and moments are considered as distributed loads. The thrust force is 

considered as a point follower force. All the Jacobians can be obtained from the nonlinear strain-position 

kinematical relationship discussed in Refs. [13, 19]. 

D. Unsteady Aerodynamics 

The distributed loads Fdist and Mdist in Eq. (6) are divided into aerodynamic loads and user-supplied loads. The 

unsteady aerodynamic loads used in the current study are based on the two dimensional (2-D) finite-state inflow 

theory provided in Ref. [21]. The theory calculates aerodynamic loads on a thin airfoil section undergoing large 

motions in an incompressible inviscid subsonic flow. The lift, moment, and drag of a thin 2-D airfoil section about 

its midchord are given by 

 

 

 

2 2 0

2 2
0

2 2 2 2
0 0 0

1
2

2

1

8

2 2 2 2

mc c c c

mc c c

mc c

z
l b z y d b y b d

y y y

m b b yz dy y

d b z d dz z d

   

   

     

 





              
      
 

      

  
  

   

    

 (7) 

where bc is the semichord and d is the distance of the midchord in front of the reference axis. The quantity /z y   is 

the angle of attack that consists of the contribution from both the pitching angle and the unsteady plunging motion of 

the airfoil. The different velocity components are shown in Fig. 2. 

The inflow parameter λ0 accounts for induced flow due to free vorticity, which is the summation of the inflow 

states λ as described in Ref. [21] and given by 

    1 2 3 1 1 2 2 3F B F BF F F F F F F F
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The aerodynamic loads about the midchord (as defined above) will be transferred to the wing elastic axis and 

rotated into the body frame for the solution of the equations of motion. To transfer the loads, one may use 



 ra mc ra mc mc ra mcl l m m dl d d     (9) 

Furthermore, the aerodynamic loads are rotated as 
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where 1BaC  is the transformation matrix from the local aerodynamic frame to the body frame. This matrix is 

determined by using the instantaneous nodal orientations and has to be updated from the kinematics at each solution 

steps and sub-steps. 
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Fig. 2 Airfoil coordinate systems and velocity components. 

 

The optimization solutions will search for the optimum wing geometry based on the steady flight performances. 

So the unsteady effects of the aerodynamic loads are not important at this stage. However, the unsteady effects 

should be included when the stability is considered in the optimization. In addition, the continuous time-domain 

simulations and the flight control development for the mission adaptive flights should also consider the unsteady 

effects. 

E. Modal Representation of Aircraft Deformation 

The strain field along the beam coordinate s is approximated by the combination of linear normal modes 
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where Φi are the linear normal strain modes of the aircraft and ηi are the corresponding magnitudes of the modes. To 

obtain the normal modes in strain, one may use the strain-based finite-element equation (Eq. 5) and perform an 

eigenvalue analysis with the stiffness and inertia matrices. As the stiffness matrix in Eq. (5) is singular, one can find 

six zero eigenvalues, which correspond to the free-free rigid-body modes. The remaining eigenvalues are the 

frequencies for the coupled elastic and rigid-body modes. For the eigenvectors of these coupled modes, they 

generally take the following form 

 F
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where F  and B  denote the elastic and rigid-body components of the modes, respectively. Since the modal 

approximation in Eq. (11) only requires the elastic deformation, the rigid-body component of these modes are 

removed, i.e., 

 F    (13) 

One more note about the normal modes is that they are not necessarily obtained about the undeformed shape. One 

can find normal modes about a geometrically nonlinear deformation. In doing so, the nonlinear system equations 

should be linearized about the deformation. 

F. Trimming of Aircraft 

Trim solution can be performed for both traditional aircraft with discrete control surfaces and the deformable 

configuration without discrete surfaces. In this study, the aircraft is trimmed at either 1-g steady level flight or 

steady coordinated turn. For the steady level flight, the force balancing equation is 
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which includes the contributions from the aerodynamic loads on the main lifting surfaces (a), gravity (g), thrust (t), 

and additional loads from control input (u) in the longitudinal direction. For steady turns, the following balancing 

equation is used: 
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where the only non-zero inertial term (with superscript i) is the centrifugal force pointing to the center of the turn 

path, which is given by 
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where MA is the total mass of the aircraft, V is the turn speed, and R is the radius of the turn path. The roots of Eq. 

(14) or (15) give the trimmed state of the aircraft. For traditional aircraft with discrete control surfaces, the roots of 

Eq. (14) are searched over the solution space using the body angle of attack αB, the elevator deflection δe, and the 

thrust T. A Newton-Raphson scheme is used to search the roots. Figure 3 illustrates the entire trim procedure of level 

flight. For the trim of turns, the roots of Eq. (15) are searched over the solution space using the body pitch angle αB, 

the bank angle φB, the aileron deflection δa, the elevator deflection δe, the rudder deflection δr, and the thrust T. It has 

to be noted that when evaluating the perturbation of the force balancing function f and the Jacobian J = Δf/Δs, the 

static elastic equilibrium equation has to be satisfied, which can be deduced from Eq. (5) and given as 

             a g t i u
FFK R R R R R       (17) 

where the generalized loads on the right side of the equation correspond to the physical loads in Eq. (14) or (15). 

To trim the flexible wing aircraft (without control surfaces) follows the similar procedure. However, the control 

parameters of the discrete control surfaces (δa, δe, and δr) should be replaced by a new type of input. In this case, the 

control loads will be used to maintain a specific wing deformation but not to generate forces to balance the aircraft. 

Therefore, the corresponding terms with superscript u should be removed from Eqs. (14) and (15), while being kept 

in Eq. (17) for the equilibrium of the aircraft deformation. Since the specific control mechanism is yet to be 

developed, the load Ru in Eq. (17) for the new aircraft configuration is not available, even if the optimum wing shape 

is found. 



The focus of this paper is to explore the optimum wing geometry for better in-flight performance. To facilitate 

the search for the optimum wing shape, a modal-based approach will be utilized, which makes use of the magnitudes 

of natural modes in the search process. 
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Fig. 3 Flowchart of trim of level flight with defined control parameters. 

G. Optimization Problem 

Because of the large design space associated with the flexible wing aircraft, the optimum trimmed wing 

geometry is explored by a modal-based optimization process. If the wing deformation is represented by a truncated 

series of the natural modes 
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Then the design variables of the optimization problem become 

  1 2, , , , , ,
T

B B Nx T       (19) 

From flight mechanics, it is evident that the minimum drag is associated with many important flight performance 

metrics. For example, the flight range of a battery-powered, propeller-driven airplane is derived as 

 t

L C
R V

D W
  (20) 

where the weight of the aircraft W is considered constant, V is the flight speed, ηt is the propulsion efficiency, and C 

represents the discharge of the capacity of the battery. The maximum range requires minimum D/L ratio, or the 



minimum drag with a constant lift. Therefore, the objective function in the optimization problem is defined as the 

drag force of the corresponding flight condition, given as 

 1 2min ( , , , , , , )B B Nx
D D T       (21) 

Several constraints have to be satisfied by the optimum solution. The first is the trim of the aircraft: 
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Again, the above condition is for the trim of general flights. It can be reduced for longitudinal flights. Ideally, it is 

necessary that the elastic equilibrium Eq. (17) be satisfied by the optimization solution. Assume an optimum wing 

deformation is identified and one can design a controller with enough control authority to satisfy Eq. (17). The 

problem now becomes how much of the control authority is required to maintain the optimum shape. To place a 

limit on the required control authority, the constraint of the strain energy associated with the wing deformation is 

considered: 

 0
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where U(x) is the strain energy of the optimum wing shape and U0 is the strain energy of a shape that is known to be 

exact or close to at a trimmed condition. Note that satisfying C2 does not guarantee the elastic equilibrium equation 

Eq. (17), but at least it avoids some unrealistic solutions that demand extremely large control power. More details 

about the use of C2 will be provided in the numerical study. Furthermore, some variables should also be constrained 

within their search limits, such as 
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and 

 lim
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The optimum solutions can be obtained by using Matlab’s “fmincon” command. It is important to note that in 

order to avoid numerical instability, the optimization variable x must be properly scaled. For instance, the magnitude 

of higher-order modes may be orders of magnitude smaller than that of lower-order modes, and such difference in 

magnitude can cause numerical instability when formulating the gradient-based optimization solutions. Therefore, to 

improve numerical accuracy, the optimization variables xi are all scaled with the scalar quantities dxi according to 

 ˆ  ( 1,2,3 )i i xix x d i     (27) 

where dxi are determined based on the initial condition of the optimization, i.e., 
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The objective function and constraints are also scaled accordingly by using the reference values from the initial 

shape, which also helps to improve the stability of the numerical solution. 

III. Numerical Results 

In this section, a highly flexible aircraft model is considered for the numerical study. The aircraft model is 

described first, followed by the introduction of linear modal analysis. The search for the optimum wing geometries 

under different flight conditions is based on the natural modes. Different optimum solutions are also compared in the 

study. 

A. Description of the Baseline Highly Flexible Aircraft 

The physical and geometrical properties of the aircraft members are shown in Fig. 4 and Table 1. The distance 

between the main wings and the tails is 10 m. The boom is considered rigid and massless. To keep the static 

stability, a point mass of 30 kg is attached to the boom at 0.75 m ahead of the main wings. The thrust force is 

applied at 2.5 m behind the main wings, which always points along the boom. Three sets of control surfaces are 



defined for the baseline vehicle, as illustrated in Fig. 4. The elevators are defined on the horizontal tails, running 

from the 1/3 span to the tip of the member. The rudder is defined on the vertical tail, also running from the 1/3 span 

to the tip of the member. The ailerons are defined on the main wings, running from 70% to 90% span of the 

member. All the control surfaces occupy 20% chord of the corresponding aircraft member. 

 

Fig. 4 Geometrical data of the baseline highly flexible aircraft. 

Table 1  Properties of the baseline highly flexible aircraft 

Wings   Tails   
Span 16 m Span of horizontal tail 2.5 m 
Chord 1 m Span of vertical tail 1.6 m 
Incidence angle 2 deg Chord of tails 0.5 m 
Sweep angle 0 deg Incidence of horizontal tail -3 deg 
Dihedral angle 0 deg Incidence of vertical tail 0 deg 
Beam ref. axis (from l.e.) 50% chord Sweep of horizontal tail 0 deg 
Cross-sectional c.g. (from l.e.) 50% chord Sweep of vertical tail 10 deg 
Mass per span 0.75 kg/m Dihedral of horizontal tail 0 deg 
Rotational moment of inertia 0.1 kg·m Beam ref. axis (from l.e.) 50% chord 
Torsional rigidity 1.00 × 104 N·m2 Cross-sectional c.g. (from l.e.) 50% chord 
Flat bending rigidity 2.00 × 104 N·m2 Mass per span 0.08 kg/m 
Edge bending rigidity 4.00 × 106 N·m2 Rotational moment of inertia 0.01 kg·m 

   Torsional rigidity 1.00 × 104 N·m2 
Complete aircraft mass 54.5 kg Flat bending rigidity 2.00 × 104 N·m2 
   Edge bending rigidity 4.00 × 106 N·m2 

 

The main wings are divided into 10 elements in the finite-element model, while the tail members are all divided 

into 3 elements. The baseline aircraft can be trimmed for different flight conditions, such as the straight and level 

flight and steady coordinated turn in a horizontal plane at different altitudes, as listed in Table 2. The level flight 

speeds at different altitudes are determined by the same dynamic pressure of the flight, while the turn speed is 

determined by reaching a similar wing tip deflection as the level flights, with a 150-m radius of the turn path. When 



the aircraft is trimmed for the straight and level flight, its body orientation and wing deformation are symmetric 

(Fig. 5) and elevators are the only control surfaces involved in the trim. However, this symmetry generally does not 

hold for the steady coordinated turn (Fig. 6), where all three types of control surfaces are engaged (Table 2). The 

wing tip deflection for the turn flight listed in the table is also the average of the left and right wings, as the wing 

geometry is asymmetric in the trimmed state. 

Table 2  Trim results of the baseline aircraft under different 
steady flight conditions 

Flight status Straight Straight Straight Turn 
Altitude (m) 0 8,000 20,000 20,000 
Speed (m/s) 6.735 10.28 25.00 20.50 

Thrust (N) 60.15 59.80 59.28 92.19 
Body pitch angle (deg) 1.28 1.27 1.26 4.44 

Bank angle (deg) -- -- -- 14.97 
Elevator angle (deg) 6.76 6.76 6.75 0.572 
Aileron angle (deg) -- -- -- 0.239 
Rudder angle (deg) -- -- -- -0.346 

Wing tip deflection (%) 32.56 32.46 32.32 32.04 
 

Fig. 5 Trimmed baseline aircraft for straight and level 
flight at 20,000 altitude. 

Fig. 6 Trimmed baseline aircraft for steady 
coordinated turn at 20,000 altitude. 

B. Natural Modes and Frequencies 

Since the focus of current study is to utilize the flexibility of the highly flexible wings to search for the optimum 

wing shape with the best performance under different flight conditions, the control surfaces are “removed” from the 



models, while the wings are allowed with the full extension/bending/torsion deformations. It is expected that with 

the optimum wing deformation, the vehicle’s performance can be improved. In consideration of the large design 

space involved in searching for the optimum wing shapes, the modal-based approach is used in the study, since an 

arbitrary wing deformation can be represented by a linear combination of fundamental mode shapes. Therefore, the 

natural modes and frequencies are explored here. The mode description and the natural frequencies of the first 20 

modes from the linear modal analysis are listed in Table 3. Because of the slenderness of the wings, the lower-order 

bending modes are coupled with the plunge and pitch modes of the rigid-body. However, such coupling becomes 

weak and negligible for the higher-order modes. 

Table 3  Natural modes and frequencies of the highly flexible aircraft (in Hz) about its undeformed shape 

No. 1 2 3 4 5 
Rigid-body Plunge + pitch Roll Plunge + pitch -- Plunge + pitch
Wing 1st S Flat Bend 1st A Flat Bend 2nd S Flat Bend 1st A Torsion 1st S Torsion 
Frequency 0.4244 1.572 2.431 4.946 5.039 
No. 6 7 8 9 10 
Rigid-body Roll Lead Plunge + pitch Roll plunge 
Wing 2nd A Flat Bend 1st S Edge Bend 3rd S Flat Bend 3rd A Flat Bend 4th S Flat Bend
Frequency 5.156 5.915 6.698 10.92 13.47 
No. 11 12 13 14 15 
Rigid-body -- -- Roll + yaw + side Roll + yaw + side -- 
Wing 2nd A Torsion 2nd S Torsion 4th A Flat Bend + 1st Tail Bend 4th A Flat Bend 5th S Flat Bend
Frequency 14.96 14.97 18.06 19.53 23.33 
No. 16 17 18 19 20 
Rigid-body -- -- Roll Lead -- 
Wing 3rd S Torsion 3rd A Torsion 5th A Flat Bend 2nd S Edge Bend 4th S Torsion 
Frequency 25.32 25.34 26.87 34.14 36.27 
S = Symmetric (with shade), A = Anti-symmetric. 

C. Steady and Level Flight 

In this study, the altitude of steady and level flight is kept at 20,000 m. The flight speed is initially fixed as 25 

m/s. The trim results of the baseline aircraft are listed in Table 2. The elevators are removed from the aircraft model, 

while the body pitch angle and the thrust force are kept the same. Obviously, the aircraft will be unbalanced. This 

state is used as the initial condition of the optimization procedure, targeting to find out the new wing deformation 

that can minimize the drag, while regaining the balance (trim). In doing so, one may carry out a series of 

optimizations where the possible wing deformations are represented by different number of modes. As the wing 

deformation is always symmetric for the steady and level flight, only the symmetric modes are included in the 

optimization. Table 4 summarizes part of the optimization results using different number of the symmetric modes, 



while the modal magnitude data of the optimum shapes by using 3 to 10 symmetric modes are plotted in Fig. 7. 

From the results, it is evident that the modal-based optimization solution is converging, where the optimum 

(minimum) drag is about 51.3 N, while the drag at initial condition is about 59.8 N. When comparing the magnitude 

of each mode, it can be seen that Modes 1, 3, 5, and 12 contribute more than the rest of the modes. It is also of 

interest to note that there may be a discontinuity in the solution if a torsional mode is included, which can be 

observed from the results with 6 and 7 symmetric modes. So, one may truncate the modes by selecting the first 12 

modes (first 7 symmetric modes) for future studies, while keeping the convergence of the solution. The optimization 

study herein have demonstrated that the modal-based optimization solution is promising in finding the trim 

condition of the aircraft while searching for the optimum flight performance – minimum drag in this case. 

Table 4  Initial and optimum wing shapes and trim results for steady and level flight 

 3 Modes 6 Modes 7 Modes 8 Modes 9 Modes 
 Initial Opt. Initial Opt. Initial Opt. Initial Opt. Initial Opt. 

Body pitch angle(deg) 1.2596 2.6619 1.2596 2.6580 1.2596 2.6380 1.2596 2.6379 1.2596 2.6357
Thrust (N) 59.2823 51.5123 59.2823 51.5205 59.2823 51.3974 59.2823 51.3976 59.2823 51.3715

Mode 1 1.5654 0.2212 1.5654 0.2212 1.5654 0.1904 1.5654 0.1905 1.5654 0.1862
Mode 3 -0.0164 -0.0161 -0.0164 -0.0161 -0.0164 -0.0161 -0.0164 -0.0161 -0.0164 -0.0161
Mode 5 0.0071 0.0021 0.0071 0.0021 0.0071 0.0020 0.0071 0.0020 0.0071 0.0020
Mode 7 -- -- 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
Mode 8 -- -- 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Mode 10 -- -- -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002
Mode 12 -- -- -- -- -0.0014 -0.0014 -0.0014 -0.0014 -0.0014 -0.0015
Mode 15 -- -- -- -- -- -- 0.0001 0.0001 0.0001 0.0001
Mode 16 -- -- -- -- -- -- -- -- 0.0006 0.0006
Drag (N) 59.84 51.46 59.84 51.47 59.84 51.34 59.84 51.34 59.84 51.32
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Fig. 7 Magnitudes of symmetric modes in the optimum shape for steady and level flight.  



 

 

Fig. 8 Optimum wing shape for steady and level flight with constraint C1. 

 

If one converts the wing deformation from the modal magnitudes given in Table 4 to physical quantities, the 

resulting wing deformation is actually very small (Fig. 8). It is important to note that to attain the solutions shown in 

Table 4, no constraints, other than the force and moment balance of the aircraft under the straight and level flight C1, 

are applied. In other words, the optimizer has a large freedom to explore the design space defined by the natural 

modes to find the wing shape, as long as the external forces are balanced. Therefore, the optimum solution tends to 

be aggressive and difficult to achieve in reality. Actually, the uncontrolled wing geometry with the balance between 

the internal wing rigidity and the external gravity and aerodynamic loads will be a deep U-shape shown in Fig. 5. 

Hence, one will need less control authority to maintain the optimum wing shape if the shape is similar to the deep U-

shape. On the contrary, if the optimum wing geometry is far from the U-shape, one needs significant amount of the 

control authority to fight against either the aerodynamic loads or the wing stiffness in order to keep the optimum 

wing shape in the flight. Therefore, additional design constraints should be considered in the optimization procedure 

to attain more feasible/realistic optimum wing geometry. This is achieved by introducing constraints C2 and C3, with 

the limits defined as 

 lim 10%U   (29) 

and 
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where the strain energy of the optimum wing shape is compared to the strain energy of the shape shown in Fig. 5, 

which also ensures the structural integrity of the aircraft under the combined loads. Note that the numbers in Eqs. 

(29) and (30) are selected to prove the optimization process is tractable, in real design problem, however, they 

should be chosen properly. 

Table 5  Initial and optimum wing shapes for steady and level flight with constraints 

 
Initial Condition 

Optimum solutions 
 Constraint C1 Const. C1 and C2 Const. C1, C2, and C3

Body pitch angle (deg) 1.26 2.64 2.84 3.21 
Thrust (N) 59.28 51.40 51.67 55.00 

Mode 1 1.5654 0.1904 0.5046 1.3798 
Mode 3 -0.0164 -0.0161 -0.1714 -0.0708 
Mode 5 0.0071 0.0020 0.0009 0.0013 
Mode 7 0.0004 0.0004 0.0003 0.0004 
Mode 8 0.0005 0.0005 0.0005 0.0005 
Mode 10 -0.0002 -0.0002 -0.0002 -0.0002 
Mode 12 -0.0014 -0.0014 -0.0001 -0.0010 

Strain energy (J) 439.8 10.04 395.8 395.8 
Drag (N) 59.84 51.34 51.61 54.92 

 

Fig. 9 Optimum wing shape for steady and level flight 
with constraints C1 and C2. 

Fig. 10 Optimum wing shape for steady and level 
flight with constraints C1, C2, and C3. 

 



Table 5 summarizes the modal magnitudes and the corresponding trim parameters of the optimum wing shapes 

when the two constraints C2 and C3 are applied in addition to C1. The results are also compared to the optimum 

solution with C1 only. Note that all the solutions compared in Table 5 involve 7 symmetric modes. Figures 9 and 10 

illustrate the resulting optimum shapes. From these results, one can see the dominance of the first flat bending mode 

(Model 1), which results in the optimum wing shapes to look more like the initial wing shape but with significantly 

less drag. It should be noted that the optimum solutions are all under trimmed condition, while the initial condition is 

untrimmed with the removal of the elevators. In particular, as shown in Table 5, with inclusion of constraints C1, C2 

and C3, the drag is reduced to 54.92 N, which is still a significant improvement from the initial drag. 

The last study in this section is to consider the flight speed as a variable in the optimization process, while the 

altitude is held at 20,000 m. In the optimization, only the first 7 symmetric modes are involved and the constraints 

C1, C2, and C3 are applied. The optimum solution is then compared to the one with the fixed flight speed (Table 6). 

Obviously, introducing an additional variable in the optimization process offers a new design degree of freedom 

when searching for the best solution. The optimum solution sees a 59% reduction in drag, compared to the fixed-

speed case, but at higher flight speed. The strain energy and bending/torsion curvature constraints are still satisfied, 

which ensures that the optimum wing geometry (Fig. 11) can be achieved with the available control authority. It is 

also interesting to notice from Fig. 11 that the aerodynamic lift force is redistributed – more lift is generated at the 

inner board of the wings, which is beneficial as the bending moment at the wing root may be reduced compared to 

the case where aerodynamic load is distributed evenly along the wing span. This load redistribution is attributed to 

the increased magnitude of the torsional modes (Modes 5 and 12) when the flight speed is a variable. 

Table 6  Initial and optimum wing shapes for steady and level flight with fixed and varying flight speeds 

 Initial Condition Fixed flight speed Variable flight speed 
Speed (m/s) 25.00 25 48.23 

Body pitch angle (deg) 1.26 3.21 2.85 
Thrust (N) 59.28 55.00 22.71 

Mode 1 1.5654 1.3798 1.4633 
Mode 3 -0.0164 -0.0708 -0.0262 
Mode 5 0.0071 0.0013 -0.0078 
Mode 7 0.0004 0.0004 0.0004 
Mode 8 0.0005 0.0005 0.0005 

Mode 10 -0.0002 -0.0002 -0.0002 
Mode 12 -0.0014 -0.0010 0.0078 

Strain energy (J) 439.8 395.8 395.8 
Drag (N) 59.84 54.92 22.68 

 



 

Fig. 11 Optimum wing shape for steady and level flight with constraints C1, C2, and C3; flight speed is a 
variable. 

 

Table 7 lists the components of the gradient vector of the objective function D with respect to each design 

variable obtained at the optimum solutions. This would indicate the sensitivity of optimum drag when subject to a 

small perturbation in the design variables. Note that the derivative components are calculated based on the scaled 

design variables x̂ so that they can be directly comparable. From Table 7, one can see that the sensitivity of the 

torsional mode (Mode 5) and the body pitch angle are dominant at steady level flight condition. 

Table 7  Components of the gradient vector at the optimum solutions for steady level flights 

dD/dx̂i C1 C1+C2 C1+C2+C3 C1+C2+C3+Variable speed
Speed -- -- -- 0.3930 

Body pitch angle 0.3906 0.3905 0.3900 0.3915 
Thrust 0 0 0 0 
Mode 1 0.0010 0.0028 -0.1637 -0.0690 
Mode 3 0.0106 0.0086 0.0135 0.0075 
Mode 5 0.8487 0.8480 0.8605 0.6404 
Mode 7 0.0001 0.0003 -0.0002 -0.0002 
Mode 8 -0.0020 -0.0020 -0.0021 -0.0018 
Mode 10 -0.0001 -0.0001 -0.0001 -0.0001 
Mode 12 0.0174 0.0156 0.0166 0.0135 

 

D. Steady Coordinated Turn 

The optimum wing geometry is also explored for the steady coordinated turn flight. The altitude is still 20,000 



m, while the nominal turn speed is set at 20.50 m/s. Two specific cases are studied here, subjected to all the 

constraints during the optimization process. The first case has the constant turn speed at nominal 20.50 m/s and the 

second case allows the turn speed to be a variable. It is important to note that in both cases the anti-symmetric 

modes must be included to represent the possible asymmetric wing geometry. In this study, the first 12 modes are 

included in the optimization solutions. For a coordinated turn, it is also necessary to set a constraint on allowable 

bank angle C4 to ensure the structural integrity, and in this study the limit is set as 

 lim 35    (31) 

Table 8 and Figs. 12 and 13 highlight the optimum solutions for the two cases, and the comparison with the 

initial condition (Table 8). It can be seen that the optimum wing geometry with the fixed turn speed is similar to the 

initial shape, hence similar drag. On the other hand, allowing the turn speed to vary during the optimization process 

results in a significant drag reduction of about 48%.  

Similarly, a sensitivity analysis is performed for the two cases. Table 9 lists the sensitivity of the drag with 

respect to the design variables calculated at the optimum solutions. It can be seen that the most sensitive design 

variables are still the body pitch angle and the torsional mode (Mode 5). It should be noted that the first bending 

mode (Mode 1) is becoming more sensitive in coordinated turns, compared to the straight flights. 

Table 8  Initial and optimum wing shapes for steady coordinated turn with fixed and varying flight speeds 

 Initial Condition Fixed flight speed Variable flight speed 
Speed (m/s) 20.50 20.50 31.91 

Body pitch angle (deg) 4.44 4.51 2.80 
Bank angle (deg) 14.97 15.89 35.00 

Thrust (N) 92.19 91.21 47.77 
Mode 1 1.5529 1.4813 0.8565 
Mode 2 -0.0069 0.0005 0.0114 
Mode 3 -0.0182 -0.0188 -0.1471 
Mode 4 0.0000 0.0000 0.0000 
Mode 5 0.0074 0.0070 -0.0024 
Mode 6 0.0022 0.0025 0.0118 
Mode 7 0.0006 0.0006 0.0006 
Mode 8 0.0007 0.0007 -0.0031 
Mode 9 0.0011 0.0011 0.0031 

Mode 10 -0.0002 -0.0002 0.0001 
Mode 11 0.0000 0.0000 -0.0001 
Mode 12 -0.0017 -0.0016 0.0015 

Strain energy (J) 434.98 395.8 395.8 
Drag (N) 91.92 90.91 47.71 

 



Fig. 12 Optimum wing shape for steady and level 
flight with constraints C2, C3, and C4; flight speed is 

fixed. 

Fig. 13 Optimum wing shape for steady and level 
flight with constraints C2, C3, and C4; flight speed is 

variable. 

 

Table 9  Components of the gradient vector at the optimum 
solutions for steady coordinated turns 

dD/dx̂i Fixed flight speed Variable flight speed 
Speed -- 0.6507 

Body pitch angle 0.8999 1.0653 
Bank angle 0 0 

Thrust 0 0 
Mode 1 -0.1972 -0.0398 
Mode 2 -0.0000 0.0001 
Mode 3 0.0141 0.0090 
Mode 4 -0.0000 -0.0000 
Mode 5 0.6237 0.6813 
Mode 6 -0.0000 -0.0000 
Mode 7 -0.0003 0.0002 
Mode 8 -0.0021 -0.0022 
Mode 9 -0.0000 0.0000 

Mode 10 -0.0001 -0.0001 
Mode 11 -0.0000 0.0000 
Mode 12 0.0112 0.0172 

 



IV. Concluding Remarks 

To determine the optimum wing geometry for a mission adaptive, highly flexible morphing aircraft, the optimum 

wing bending and torsional deformations are explored in this paper. The goal is to search for the most efficient wing 

configuration that produces the minimum drag at various flight profiles. The geometrically nonlinear effects of the 

highly flexible aircraft were modeled through a methodology that integrates a nonlinear strain-based beam model, 

unsteady aerodynamics, and the six-degree-of-freedom rigid-body equations. With the strain-based finite-element 

implementation of the formulation, the nonlinear wing deformations of the highly flexible aircraft were further 

represented by the linear normal modes. This allows for a quick and effective characterization of the contributing 

mode shapes to a specific wing deformation. Based on the modal representation, optimum wing geometries under 

different flight conditions were explored through an optimization procedure that considered the magnitude of each 

mode as a design variable. The objective was to minimize the drag at those flight conditions, while satisfying the 

trimming of the aircraft and other constraints. Since the control mechanism and control loads were not available, the 

flapless aircraft platform and the strain energy from wing deformations were used to place a constraint on the 

required control authority. 

Two flight conditions were considered in the current study. One was the steady level flight and the other was the 

steady coordinated turn. To trim the highly flexible flapless morphing aircraft, the coupled wing bending and 

torsional deformations along the wing span were used to tailor the wing load distribution. In particular, the optimum 

solutions showed that tailored wing twist/torsion resulted in a significant drag reduction and improved performance. 

Furthermore, the sensitivity analysis also indicated the importance of torsional modes. 

The numerical study demonstrated the feasibility of the modal-based optimization scheme for finding the 

optimum wing geometry. The significance of each mode in contributing to the optimum wing geometry was also 

identified from the optimal solution. This will benefit the future study on developing the reduced-order modal-based 

flight controllers. Further follow-up studies will include other flight performance metrics, such as flutter boundary, 

roll performance, etc., and the optimum wing shapes at these flight scenarios will be determined. 
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